Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Tight MIP Formulation for Pipeline Gas Flow with Linepack (2410.19280v1)

Published 25 Oct 2024 in cs.CE

Abstract: In integrated power and gas energy system optimization models (ESOMs), pipeline gas transmission with linepack is a particularly complex problem due to its non-linear and non-convex character. For ESOMs based on mixed-integer linear programing, piecewise linearization is a well-established convexification approach for this problem, which, however, requires binary variables to model feasible combinations of linear gas flow and pressure segments and thus can quickly become computationally challenging. In order to improve computational performance, this paper proposes a piecewise linearization method specifically designed to be tight, resulting in a reduced problem space a solver can explore faster. We provide numerical results comparing the proposed formulation against two piecewise linearizations from the literature, both from a theoretical point of view and in terms of practical computational performance, with results showing an average speed-up of 2.83 times for our case study. Test cases are carried out on a modified 24-bus IEEE Reliability Test System and a 12-node gas system, considering discrete unit commitment decisions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. European Commission, A hydrogen strategy for a climate-neutral Europe (2020). URL https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0301
  2. doi:10.1016/j.rser.2022.112246.
  3. doi:10.1016/j.adapen.2021.100063.
  4. doi:10.1109/TPWRS.2014.2372013.
  5. doi:10.1016/j.compchemeng.2020.106882.
  6. doi:10.1016/j.apenergy.2023.122484.
  7. doi:10.1016/j.energy.2023.129822.
  8. doi:10.1109/TSTE.2013.2274818.
  9. doi:10.1109/PESGM40551.2019.8973599.
  10. doi:10.1287/ijoc.2016.0697.
  11. doi:10.1109/TPWRS.2021.3092760.
  12. doi:10.1016/j.energy.2018.06.153.
  13. doi:10.1016/j.ejor.2018.06.036.
  14. doi:10.1016/j.epsr.2022.108502.
  15. doi:10.1109/TSTE.2016.2595486.
  16. doi:10.1007/978-3-319-11008-0.
  17. doi:10.1016/j.ejco.2022.100031.
  18. doi:10.1109/TPWRS.2012.2222938.
  19. doi:10.1016/j.softx.2022.101141.
  20. doi:10.1016/j.apenergy.2020.115925.
  21. doi:10.1016/j.ijhydene.2022.04.293.
  22. T. Klatzer, Data and Preprocessing Algorithm (2024). URL https://github.com/tklatzer/Data-and-Preprocessing-Algorithm

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.