Tight MIP Formulation for Pipeline Gas Flow with Linepack (2410.19280v1)
Abstract: In integrated power and gas energy system optimization models (ESOMs), pipeline gas transmission with linepack is a particularly complex problem due to its non-linear and non-convex character. For ESOMs based on mixed-integer linear programing, piecewise linearization is a well-established convexification approach for this problem, which, however, requires binary variables to model feasible combinations of linear gas flow and pressure segments and thus can quickly become computationally challenging. In order to improve computational performance, this paper proposes a piecewise linearization method specifically designed to be tight, resulting in a reduced problem space a solver can explore faster. We provide numerical results comparing the proposed formulation against two piecewise linearizations from the literature, both from a theoretical point of view and in terms of practical computational performance, with results showing an average speed-up of 2.83 times for our case study. Test cases are carried out on a modified 24-bus IEEE Reliability Test System and a 12-node gas system, considering discrete unit commitment decisions.
- European Commission, A hydrogen strategy for a climate-neutral Europe (2020). URL https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0301
- doi:10.1016/j.rser.2022.112246.
- doi:10.1016/j.adapen.2021.100063.
- doi:10.1109/TPWRS.2014.2372013.
- doi:10.1016/j.compchemeng.2020.106882.
- doi:10.1016/j.apenergy.2023.122484.
- doi:10.1016/j.energy.2023.129822.
- doi:10.1109/TSTE.2013.2274818.
- doi:10.1109/PESGM40551.2019.8973599.
- doi:10.1287/ijoc.2016.0697.
- doi:10.1109/TPWRS.2021.3092760.
- doi:10.1016/j.energy.2018.06.153.
- doi:10.1016/j.ejor.2018.06.036.
- doi:10.1016/j.epsr.2022.108502.
- doi:10.1109/TSTE.2016.2595486.
- doi:10.1007/978-3-319-11008-0.
- doi:10.1016/j.ejco.2022.100031.
- doi:10.1109/TPWRS.2012.2222938.
- doi:10.1016/j.softx.2022.101141.
- doi:10.1016/j.apenergy.2020.115925.
- doi:10.1016/j.ijhydene.2022.04.293.
- T. Klatzer, Data and Preprocessing Algorithm (2024). URL https://github.com/tklatzer/Data-and-Preprocessing-Algorithm
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.