Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Learning Diffusion Policies from Demonstrations For Compliant Contact-rich Manipulation (2410.19235v1)

Published 25 Oct 2024 in cs.RO and cs.AI

Abstract: Robots hold great promise for performing repetitive or hazardous tasks, but achieving human-like dexterity, especially in contact-rich and dynamic environments, remains challenging. Rigid robots, which rely on position or velocity control, often struggle with maintaining stable contact and applying consistent force in force-intensive tasks. Learning from Demonstration has emerged as a solution, but tasks requiring intricate maneuvers, such as powder grinding, present unique difficulties. This paper introduces Diffusion Policies For Compliant Manipulation (DIPCOM), a novel diffusion-based framework designed for compliant control tasks. By leveraging generative diffusion models, we develop a policy that predicts Cartesian end-effector poses and adjusts arm stiffness to maintain the necessary force. Our approach enhances force control through multimodal distribution modeling, improves the integration of diffusion policies in compliance control, and extends our previous work by demonstrating its effectiveness in real-world tasks. We present a detailed comparison between our framework and existing methods, highlighting the advantages and best practices for deploying diffusion-based compliance control.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent advances in robot learning from demonstration,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 3, pp. 297–330, 2020. [Online]. Available: https://doi.org/10.1146/annurev-control-100819-063206
  2. Y. Nakajima, M. Hamaya, Y. Suzuki, T. Hawai, F. von Drigalski, K. Tanaka, Y. Ushiku, and K. Ono, “Robotic powder grinding with a soft jig for laboratory automation in material science,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 2320–2326.
  3. A. Calanca, R. Muradore, and P. Fiorini, “A review of algorithms for compliant control of stiff and fixed-compliance robots,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 2, pp. 613–624, 2015.
  4. T. Kamijo, C. C. Beltran-Hernandez, and M. Hamaya, “Learning variable compliance control from a few demonstrations for bimanual robot with haptic feedback teleoperation system,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2024.
  5. X. Jia, D. Blessing, X. Jiang, M. Reuss, A. Donat, R. Lioutikov, and G. Neumann, “Towards diverse behaviors: A benchmark for imitation learning with human demonstrations,” in International Conference on Learning Representations (ICLR), 2024. [Online]. Available: https://openreview.net/forum?id=6pPYRXKPpw
  6. A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot programming by demonstration,” in Springer Handbook of Robotics, 2008, pp. 1371–1394. [Online]. Available: https://doi.org/10.1007/978-3-540-30301-5_60
  7. A. M. Schmidts, D. Lee, and A. Peer, “Imitation learning of human grasping skills from motion and force data,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011, pp. 1002–1007.
  8. P. Kormushev, S. Calinon, and D. G. Caldwell, “Imitation learning of positional and force skills demonstrated via kinesthetic teaching and haptic input,” Advanced Robotics, vol. 25, no. 5, pp. 581–603, 2011.
  9. L. Rozo, P. Jiménez, and C. Torras, “A robot learning from demonstration framework to perform force-based manipulation tasks,” Intelligent Service Robotics, vol. 6, no. 1, pp. 33–51, 2013.
  10. Y. Wang, C. C. Beltran-Hernandez, W. Wan, and K. Harada, “Robotic imitation of human assembly skills using hybrid trajectory and force learning,” in IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 11 278–11 284.
  11. T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-grained bimanual manipulation with low-cost hardware,” in Robotics: Science and Systems (RSS), 2023. [Online]. Available: https://doi.org/10.15607/RSS.2023.XIX.016
  12. C. Chi, Z. Xu, C. Pan, E. Cousineau, B. Burchfiel, S. Feng, R. Tedrake, and S. Song, “Universal manipulation interface: In-the-wild robot teaching without in-the-wild robots,” arXiv preprint arXiv:2402.10329, 2024.
  13. M. Drolet, S. Stepputtis, S. Kailas, A. Jain, J. Peters, S. Schaal, and H. Ben Amor, “A comparison of imitation learning algorithms for bimanual manipulation,” IEEE Robotics and Automation Letters (RA-L), vol. 9, no. 10, pp. 8579–8586, 2024.
  14. T. Z. Zhao, J. Tompson, D. Driess, P. Florence, S. K. S. Ghasemipour, C. Finn, and A. Wahid, “ALOHA Unleashed: A simple recipe for robot dexterity,” in Annual Conference on Robot Learning (CoRL), 2024.
  15. C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song, “Diffusion policy: Visuomotor policy learning via action diffusion,” in Robotics: Science and Systems (RSS), 2023. [Online]. Available: https://doi.org/10.15607/RSS.2023.XIX.026
  16. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 6840–6851, 2020.
  17. L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive survey of methods and applications,” ACM Computing Surveys, vol. 56, no. 4, pp. 1–39, 2023.
  18. J. Carvalho, A. T. Le, M. Baierl, D. Koert, and J. Peters, “Motion planning diffusion: Learning and planning of robot motions with diffusion models,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023, pp. 1916–1923.
  19. H. Ryu, J. Kim, H. An, J. Chang, J. Seo, T. Kim, Y. Kim, C. Hwang, J. Choi, and R. Horowitz, “Diffusion-edfs: Bi-equivariant denoising generative modeling on se (3) for visual robotic manipulation,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 18 007–18 018.
  20. E. Ng, Z. Liu, and M. Kennedy, “Diffusion co-policy for synergistic human-robot collaborative tasks,” IEEE Robotics and Automation Letters (RA-L), vol. 9, no. 1, pp. 215–222, 2024.
  21. J. Urain, N. Funk, J. Peters, and G. Chalvatzaki, “Se (3)-diffusionfields: Learning smooth cost functions for joint grasp and motion optimization through diffusion,” in IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 5923–5930.
  22. W. Liu, Y. Du, T. Hermans, S. Chernova, and C. Paxton, “Structdiffusion: Language-guided creation of physically-valid structures using unseen objects,” in Robotics: Science and Systems (RSS), 2023. [Online]. Available: https://doi.org/10.15607/RSS.2023.XIX.031
  23. M. Reuss, M. Li, X. Jia, and R. Lioutikov, “Goal-conditioned imitation learning using score-based diffusion policies,” in Robotics: Science and Systems (RSS), 2023. [Online]. Available: https://doi.org/10.15607/RSS.2023.XIX.028
  24. Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity of rotation representations in neural networks,” in IEEE/CVF conference on computer vision and pattern recognition (CVPR), 2019, pp. 5745–5753.
  25. J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” in International Conference on Learning Representations (ICLR), 2021.
  26. A. Vaswani, “Attention is all you need,” Advances in Neural Information Processing Systems (NeurIPS), 2017.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.