Papers
Topics
Authors
Recent
2000 character limit reached

kNN For Whisper And Its Effect On Bias And Speaker Adaptation

Published 24 Oct 2024 in cs.CL, cs.SD, and eess.AS | (2410.18850v2)

Abstract: Speech recognition performance varies by language, domain, and speaker characteristics such as accent, but fine-tuning a model on any of these categories may lead to catastrophic forgetting. Token-level $k$ nearest neighbor search ($k$NN), first proposed for neural sequence decoders for natural language generation (NLG) and machine translation (MT), is a non-parametric method that instead adapts using inference-time search in an external datastore, without training the underlying model. We show that Whisper, a transformer end-to-end speech model, benefits from $k$NN. We investigate the differences between the speech and text setups. We discuss implications for speaker adaptation, and analyze improvements by gender, accent, and age.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 5 likes about this paper.