Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

AC-Network-Informed DC Optimal Power Flow for Electricity Markets (2410.18413v1)

Published 24 Oct 2024 in math.OC, cs.SY, and eess.SY

Abstract: This paper presents a parametric quadratic approximation of the AC optimal power flow (AC-OPF) problem for time-sensitive and market-based applications. The parametric approximation preserves the physics-based but simple representation provided by the DC-OPF model and leverages market and physics information encoded in the data-driven demand-dependent parameters. To enable the deployment of the proposed model for real-time applications, we propose a supervised learning approach to predict near-optimal parameters, given a certain metric concerning the dispatch quantities and locational marginal prices (LMPs). The training dataset is generated based on the solution of the accurate AC-OPF problem and a bilevel optimization problem, which calibrates parameters satisfying two market properties: cost recovery and revenue adequacy. We show the proposed approach's performance in various test systems in terms of cost and dispatch approximation errors, LMPs, market properties satisfaction, dispatch feasibility, and generalizability with respect to N-1 network topologies.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.