Papers
Topics
Authors
Recent
2000 character limit reached

DMTG: A Human-Like Mouse Trajectory Generation Bot Based on Entropy-Controlled Diffusion Networks (2410.18233v1)

Published 23 Oct 2024 in cs.CR

Abstract: CAPTCHAs protect against resource misuse and data theft by distinguishing human activity from automated bots. Advances in machine learning have made traditional image and text-based CAPTCHAs vulnerable to attacks, leading modern CAPTCHAs, such as GeeTest and Akamai, to incorporate behavioral analysis like mouse trajectory detection. Existing bypass techniques struggle to fully mimic human behavior, making it difficult to evaluate the effectiveness of anti-bot measures. To address this, we propose a diffusion model-based mouse trajectory generation framework (DMTG), which controls trajectory complexity and produces realistic human-like mouse movements. DMTG also provides white-box and black-box testing methods to assess its ability to bypass CAPTCHA systems. In experiments, DMTG reduces bot detection accuracy by 4.75%-9.73% compared to other models. Additionally, it mimics physical human behaviors, such as slow initiation and directional force differences, demonstrating improved performance in both simulation and real-world CAPTCHA scenarios.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.