Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Reconfigurable Hydrostatics: Toward Multifunctional and Powerful Wearable Robotics (2410.17936v1)

Published 23 Oct 2024 in cs.RO, cs.SY, and eess.SY

Abstract: Wearable and locomotive robot designers face multiple challenges when choosing actuation. Traditional fully actuated designs using electric motors are multifunctional but oversized and inefficient for bearing conservative loads and for being backdrivable. Alternatively, quasi-passive and underactuated designs reduce the size of motorization and energy storage, but are often designed for specific tasks. Designers of versatile and stronger wearable robots will face these challenges unless future actuators become very torque-dense, backdrivable and efficient. This paper explores a design paradigm for addressing this issue: reconfigurable hydrostatics. We show that a hydrostatic actuator can integrate a passive force mechanism and a sharing mechanism in the fluid domain and still be multifunctional. First, an analytical study compares how these two mechanisms can relax the motorization requirements in the context of a load-bearing exoskeleton. Then, the hydrostatic concept integrating these two mechanisms using hydraulic components is presented. A case study analysis shows the mass/efficiency/inertia benefits of the concept over a fully actuated one. Then, the feasibility of the concept is partially validated with a proof-of-concept that actuates the knees of an exoskeleton. The experiments show that it can track the vertical ground reaction force (GRF) profiles of walking, running, squatting, and jumping, and that the energy consumption is 6x lower. The transient force behaviors due to switching from one leg to the other are also analyzed along with some mitigation to improve them.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. S. Seok, A. Wang, M. Y. Chuah, D. J. Hyun, J. Lee, D. M. Otten, J. H. Lang, and S. Kim, “Design Principles for Energy-Efficient Legged Locomotion and Implementation on the MIT Cheetah Robot,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 3, pp. 1117–1129, Jun. 2015. [Online]. Available: https://ieeexplore.ieee.org/document/6880316/
  2. A. SaLoutos, E. Stanger-Jones, Y. Ding, M. Chignoli, and S. Kim, “Design and Development of the MIT Humanoid: A Dynamic and Robust Research Platform,” in 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids), Dec. 2023, pp. 1–8, iSSN: 2164-0580. [Online]. Available: https://ieeexplore.ieee.org/document/10375199/?arnumber=10375199
  3. T. Elery, S. Rezazadeh, C. Nesler, and R. D. Gregg, “Design and Validation of a Powered Knee–Ankle Prosthesis With High-Torque, Low-Impedance Actuators,” IEEE Transactions on Robotics, vol. 36, no. 6, pp. 1649–1668, Dec. 2020, conference Name: IEEE Transactions on Robotics.
  4. N. Kashiri, A. Abate, S. J. Abram, A. Albu-Schaffer, P. J. Clary, M. Daley, S. Faraji, R. Furnemont, M. Garabini, H. Geyer, A. M. Grabowski, J. Hurst, J. Malzahn, G. Mathijssen, D. Remy, W. Roozing, M. Shahbazi, S. N. Simha, J.-B. Song, N. Smit-Anseeuw, S. Stramigioli, B. Vanderborght, Y. Yesilevskiy, and N. Tsagarakis, “An Overview on Principles for Energy Efficient Robot Locomotion,” Frontiers in Robotics and AI, vol. 5, Dec. 2018, publisher: Frontiers. [Online]. Available: https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2018.00129/full
  5. C. Khazoom, C. Véronneau, J.-P. L. Bigué, J. Grenier, A. Girard, and J.-S. Plante, “Design and Control of a Multifunctional Ankle Exoskeleton Powered by Magnetorheological Actuators to Assist Walking, Jumping, and Landing,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 3083–3090, Jul. 2019.
  6. M. Grimmer, M. Eslamy, S. Gliech, and A. Seyfarth, “A comparison of parallel- and series elastic elements in an actuator for mimicking human ankle joint in walking and running,” in 2012 IEEE International Conference on Robotics and Automation, May 2012, pp. 2463–2470, iSSN: 1050-4729.
  7. G. Elliott, A. Marecki, and H. M. Herr, “Design of a Clutch–Spring Knee Exoskeleton for Running,” Journal of Medical Devices-transactions of The Asme, vol. 8, no. 3, p. 031002, Sep. 2014, mAG ID: 2052232537.
  8. A. M. Dollar and H. Herr, “Design of a quasi-passive knee exoskeleton to assist running,” in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 2008, pp. 747–754, iSSN: 2153-0866.
  9. E. Gizzo and E. Ackerman, “Boston Dynamics’ Marc Raibert on Next-Gen ATLAS: ”A Huge Amount of Work”,” 2016. [Online]. Available: https://spectrum.ieee.org/boston-dynamics-marc-raibert-on-nextgen-atlas
  10. A. T. Asbeck, K. Schmidt, I. Galiana, D. Wagner, and C. J. Walsh, “Multi-joint soft exosuit for gait assistance,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), May 2015, pp. 6197–6204, iSSN: 1050-4729.
  11. J. Denis, A. Lecavalier, J.-S. Plante, and A. Girard, “Multimodal Hydrostatic Actuators for Wearable Robots: A Preliminary Assessment of Mass-Saving and Energy-Efficiency Opportunities,” in 2022 International Conference on Robotics and Automation (ICRA).   Philadelphia, PA, USA: IEEE, May 2022, pp. 8112–8118. [Online]. Available: https://ieeexplore.ieee.org/document/9812435/
  12. M.-A. Lacasse, G. Lachance, J. Boisclair, J. Ouellet, and C. Gosselin, “On the design of a statically balanced serial robot using remote counterweights,” in 2013 IEEE International Conference on Robotics and Automation, May 2013, pp. 4189–4194, iSSN: 1050-4729. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6631169
  13. S. K. Banala, S. K. Agrawal, A. Fattah, V. Krishnamoorthy, W.-L. Hsu, J. Scholz, and K. Rudolph, “Gravity-Balancing Leg Orthosis and Its Performance Evaluation,” IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1228–1239, Dec. 2006, conference Name: IEEE Transactions on Robotics.
  14. Y. Zhang, J. Jiang, and N. G. Tsagarakis, “A Novel Passive Parallel Elastic Actuation Principle for Load Compensation in Legged Robots,” IEEE Robotics and Automation Letters, vol. 9, no. 10, pp. 8881–8888, Oct. 2024. [Online]. Available: https://ieeexplore.ieee.org/document/10643641/
  15. S. Y. Kim and D. J. Braun, “Variable Stiffness Floating Spring Leg: Performing Net-Zero Energy Cost Tasks Not Achievable Using Fixed Stiffness Springs,” IEEE Robotics and Automation Letters, vol. 8, no. 9, pp. 5400–5407, Sep. 2023, conference Name: IEEE Robotics and Automation Letters. [Online]. Available: https://ieeexplore.ieee.org/document/10173556
  16. N. G. Tsagarakis, S. Morfey, H. Dallali, G. A. Medrano-Cerda, and D. G. Caldwell, “An asymmetric compliant antagonistic joint design for high performance mobility,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.   Tokyo: IEEE, Nov. 2013, pp. 5512–5517. [Online]. Available: http://ieeexplore.ieee.org/document/6697155/
  17. W. Roozing, Z. Li, G. A. Medrano-Cerda, D. G. Caldwell, and N. G. Tsagarakis, “Development and Control of a Compliant Asymmetric Antagonistic Actuator for Energy Efficient Mobility,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 2, pp. 1080–1091, Apr. 2016. [Online]. Available: http://ieeexplore.ieee.org/document/7303955/
  18. W. Roozing, Z. Ren, and N. G. Tsagarakis, “Design of a Novel 3-DoF Leg with Series and Parallel Compliant Actuation for Energy Efficient Articulated Robots,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   Brisbane, QLD: IEEE, May 2018, pp. 1–8. [Online]. Available: https://ieeexplore.ieee.org/document/8460493/
  19. W. Fan, Z. Dai, W. Li, and T. Liu, “Load-Carrying Assistance of Articulated Legged Robots Based on Hydrostatic Support,” IEEE Robotics and Automation Letters, vol. 9, no. 10, pp. 8274–8281, Oct. 2024, conference Name: IEEE Robotics and Automation Letters. [Online]. Available: https://ieeexplore.ieee.org/document/10629043
  20. C. A. Fukuchi, R. K. Fukuchi, and M. Duarte, “A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals,” PeerJ, vol. 6, p. e4640, Apr. 2018. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5922232/
  21. R. K. Fukuchi, C. A. Fukuchi, and M. Duarte, “A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics,” PeerJ, vol. 5, p. e3298, May 2017, publisher: PeerJ Inc. [Online]. Available: https://peerj.com/articles/3298
  22. H. K. Ko, S. W. Lee, D. H. Koo, I. Lee, and D. J. Hyun, “Waist-assistive exoskeleton powered by a singular actuation mechanism for prevention of back-injury,” Robotics and Autonomous Systems, vol. 107, pp. 1–9, Sep. 2018. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0921889018300794
  23. F. Lanotte, A. Baldoni, F. Dell’ Agnello, A. Scalamogna, N. Mansi, L. Grazi, B. Chen, S. Crea, and N. Vitiello, “Design and characterization of a multi-joint underactuated low-back exoskeleton for lifting tasks,” in 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob).   New York City, NY, USA: IEEE, Nov. 2020, pp. 1146–1151. [Online]. Available: https://ieeexplore.ieee.org/document/9224370/
  24. E. Tricomi, N. Lotti, F. Missiroli, X. Zhang, M. Xiloyannis, T. Müller, S. Crea, E. Papp, J. Krzywinski, N. Vitiello, and L. Masia, “Underactuated Soft Hip Exosuit Based on Adaptive Oscillators to Assist Human Locomotion,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 936–943, Apr. 2022, conference Name: IEEE Robotics and Automation Letters.
  25. K. Schmidt, J. E. Duarte, M. Grimmer, A. Sancho-Puchades, H. Wei, C. S. Easthope, and R. Riener, “The Myosuit: Bi-articular Anti-gravity Exosuit That Reduces Hip Extensor Activity in Sitting Transfers,” Frontiers in Neurorobotics, vol. 11, p. 57, Oct. 2017. [Online]. Available: http://journal.frontiersin.org/article/10.3389/fnbot.2017.00057/full
  26. Mawashi, “UPRISE™ Load-Bearing Exoskeleton.” [Online]. Available: https://mawashi.ca/en/defence-and-security/uprise/
  27. P. Liang, W. H. Kwong, A. Sidarta, C. K. Yap, W. K. Tan, L. S. Lim, P. Y. Chan, C. W. K. Kuah, S. K. Wee, K. Chua, C. Quek, and W. T. Ang, “An Asian-centric human movement database capturing activities of daily living,” Scientific Data, vol. 7, no. 1, p. 290, Sep. 2020. [Online]. Available: https://www.nature.com/articles/s41597-020-00627-7
  28. P. Cormie, J. M. McBride, and G. O. McCaulley, “Power-Time, Force-Time, and Velocity-Time Curve Analysis during the Jump Squat: Impact of Load,” Journal of Applied Biomechanics, vol. 24, no. 2, pp. 112–120, May 2008. [Online]. Available: https://journals.humankinetics.com/view/journals/jab/24/2/article-p112.xml
  29. Robodrive, “Motor Parameters ILM38x12,” 2021. [Online]. Available: https://www.tq-group.com/filedownloads/files/products/robodrive/extended_data-sheets/drva_db-lim-kits_ilm38x12_rev200.pdf
  30. J. M. Hollerbach, I. W. Hunter, and J. Ballantyne, “A comparative analysis of actuator technologies for robotics,” Aug. 1992. [Online]. Available: https://scinapse.io/papers/1554436968
  31. Logan T. Williams, “Fundamentals of External Gear Pump Design,” 2022.
  32. J. Denis, J.-S. Plante, and A. Girard, “Low-Level Force-Ccontrol of MR-Hydrostatic Actuators,” IEEE Robotics and Automation Letters, pp. 3849–3856, 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9369880/

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.