PGDiffSeg: Prior-Guided Denoising Diffusion Model with Parameter-Shared Attention for Breast Cancer Segmentation (2410.17812v1)
Abstract: Early detection through imaging and accurate diagnosis is crucial in mitigating the high mortality rate associated with breast cancer. However, locating tumors from low-resolution and high-noise medical images is extremely challenging. Therefore, this paper proposes a novel PGDiffSeg (Prior-Guided Diffusion Denoising Model with Parameter-Shared Attention) that applies diffusion denoising methods to breast cancer medical image segmentation, accurately recovering the affected areas from Gaussian noise. Firstly, we design a parallel pipeline for noise processing and semantic information processing and propose a parameter-shared attention module (PSA) in multi-layer that seamlessly integrates these two pipelines. This integration empowers PGDiffSeg to incorporate semantic details at multiple levels during the denoising process, producing highly accurate segmentation maps. Secondly, we introduce a guided strategy that leverages prior knowledge to simulate the decision-making process of medical professionals, thereby enhancing the model's ability to locate tumor positions precisely. Finally, we provide the first-ever discussion on the interpretability of the generative diffusion model in the context of breast cancer segmentation. Extensive experiments have demonstrated the superiority of our model over the current state-of-the-art approaches, confirming its effectiveness as a flexible diffusion denoising method suitable for medical image research. Our code will be publicly available later.
- R. L. Siegel, K. D. Miller, N. S. Wagle, and A. Jemal, “Cancer statistics, 2023,” CA: A Cancer Journal for Clinicians, vol. 73, no. 1, pp. 17–48, 2023. [Online]. Available: https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.21763
- D. Crosby, S. Bhatia, K. M. Brindle, L. M. Coussens, C. Dive, M. Emberton, S. Esener, R. C. Fitzgerald, S. S. Gambhir, P. Kuhn, T. R. Rebbeck, and S. Balasubramanian, “Early detection of cancer,” Science, vol. 375, no. 6586, p. eaay9040, 2022. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.aay9040
- J. M. Croswell, D. F. Ransohoff, and B. S. Kramer, “Principles of cancer screening: Lessons from history and study design issues,” Seminars in Oncology, vol. 37, no. 3, pp. 202–215, 2010, cancer Prevention I. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0093775410000710
- T. J. O’Grady, M. A. Gates, and F. P. Boscoe, “Thyroid cancer incidence attributable to overdiagnosis in the united states 1981–2011,” International Journal of Cancer, vol. 137, no. 11, pp. 2664–2673, 2015. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/ijc.29634
- K. Sasaki, S. S. Strom, S. O’Brien, E. Jabbour, F. Ravandi, M. Konopleva, G. Borthakur, N. Pemmaraju, N. Daver, P. Jain, S. Pierce, H. Kantarjian, and J. E. Cortes, “Relative survival in patients with chronic-phase chronic myeloid leukaemia in the tyrosine-kinase inhibitor era: analysis of patient data from six prospective clinical trials,” The Lancet Haematology, vol. 2, no. 5, pp. e186–e193, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352302615000484
- L. Singh, Z. Jaffery, Z. Zaheeruddin, and R. Singh, “Segmentation and characterization of breast tumor in mammograms,” in 2010 International Conference on Advances in Recent Technologies in Communication and Computing, 2010, pp. 213–216.
- J. Yang, L. Jiao, R. Shang, X. Liu, R. Li, and L. Xu, “Ept-net: Edge perception transformer for 3d medical image segmentation,” IEEE Transactions on Medical Imaging, pp. 1–1, 2023.
- Z. Tian, H. Zhao, M. Shu, Z. Yang, R. Li, and J. Jia, “Prior guided feature enrichment network for few-shot segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 2, pp. 1050–1065, 2022.
- S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image segmentation using deep learning: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3523–3542, 2022.
- J.-J. Liu, Q. Hou, Z.-A. Liu, and M.-M. Cheng, “Poolnet+: Exploring the potential of pooling for salient object detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 887–904, 2023.
- X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, and P.-A. Heng, “H-denseunet: Hybrid densely connected unet for liver and tumor segmentation from ct volumes,” IEEE Transactions on Medical Imaging, vol. 37, no. 12, pp. 2663–2674, 2018.
- R. Ke, A. Bugeau, N. Papadakis, P. Schuetz, and C.-B. Schönlieb, “Learning to segment microscopy images with lazy labels,” in Computer Vision – ECCV 2020 Workshops, A. Bartoli and A. Fusiello, Eds. Cham: Springer International Publishing, 2020, pp. 411–428.
- Y. Liu, F. Zhang, C. Chen, S. Wang, Y. Wang, and Y. Yu, “Act like a radiologist: Towards reliable multi-view correspondence reasoning for mammogram mass detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 10, pp. 5947–5961, 2022.
- T. Liu, H. Wang, S. Yu, F. Feng, and J. Zhao, “A soft-attention guidance stacked neural network for neoadjuvant chemotherapy’s pathological response diagnosis using breast dynamic contrast-enhanced mri,” Biomedical Signal Processing and Control, vol. 86, p. 105145, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1746809423005785
- J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 6840–6851. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
- P. Li, Y. Liu, Z. Cui, F. Yang, Y. Zhao, C. Lian, and C. Gao, “Semantic graph attention with explicit anatomical association modeling for tooth segmentation from cbct images,” IEEE Transactions on Medical Imaging, vol. 41, no. 11, pp. 3116–3127, 2022.
- H. Huang, H. Zheng, L. Lin, M. Cai, H. Hu, Q. Zhang, Q. Chen, Y. Iwamoto, X. Han, Y.-W. Chen, and R. Tong, “Medical image segmentation with deep atlas prior,” IEEE Transactions on Medical Imaging, vol. 40, no. 12, pp. 3519–3530, 2021.
- K. Gong, K. Johnson, G. El Fakhri, Q. Li, and T. Pan, “Pet image denoising based on denoising diffusion probabilistic model,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 51, no. 2, pp. 358–368, 2024.
- H. Chung and J. C. Ye, “Score-based diffusion models for accelerated mri,” Medical Image Analysis, vol. 80, p. 102479, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1361841522001268
- T. Amit, T. Shaharbany, E. Nachmani, and L. Wolf, “Segdiff: Image segmentation with diffusion probabilistic models,” 2021. [Online]. Available: https://arxiv.org/abs/2112.00390
- R. S. Zimmermann, L. Schott, Y. Song, B. A. Dunn, and D. A. Klindt, “Score-based generative classifiers,” in NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications, 2021.
- B. Kim and J. C. Ye, “Diffusion deformable model for 4d temporal medical image generation,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2022, L. Wang, Q. Dou, P. T. Fletcher, S. Speidel, and S. Li, Eds. Cham: Springer Nature Switzerland, 2022, pp. 539–548.
- P. A. Moghadam, S. Van Dalen, K. C. Martin, J. Lennerz, S. Yip, H. Farahani, and A. Bashashati, “A morphology focused diffusion probabilistic model for synthesis of histopathology images,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), January 2023, pp. 2000–2009.
- F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah, “Diffusion models in vision: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–20, 2023.
- J. Wolleb, R. Sandkühler, F. Bieder, P. Valmaggia, and P. C. Cattin, “Diffusion models for implicit image segmentation ensembles,” in Proceedings of The 5th International Conference on Medical Imaging with Deep Learning, ser. Proceedings of Machine Learning Research, E. Konukoglu, B. Menze, A. Venkataraman, C. Baumgartner, Q. Dou, and S. Albarqouni, Eds., vol. 172. PMLR, 06–08 Jul 2022, pp. 1336–1348. [Online]. Available: https://proceedings.mlr.press/v172/wolleb22a.html
- J. Wu, R. Fu, H. Fang, Y. Zhang, Y. Yang, H. Xiong, H. Liu, and Y. Xu, “Medsegdiff: Medical image segmentation with diffusion probabilistic model,” in Medical Imaging with Deep Learning. PMLR, 2024, pp. 1623–1639.
- G. J. Chowdary and Z. Yin, “Diffusion transformer u-net for medical image segmentation,” in International conference on medical image computing and computer-assisted intervention. Springer, 2023, pp. 622–631.
- D. Karimi, S. D. Vasylechko, and A. Gholipour, “Convolution-free medical image segmentation using transformers,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, and C. Essert, Eds. Cham: Springer International Publishing, 2021, pp. 78–88.
- H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, and M. Wang, “Swin-unet: Unet-like pure transformer for medical image segmentation,” in Computer Vision – ECCV 2022 Workshops, L. Karlinsky, T. Michaeli, and K. Nishino, Eds. Cham: Springer Nature Switzerland, 2023, pp. 205–218.
- J. M. J. Valanarasu, P. Oza, I. Hacihaliloglu, and V. M. Patel, “Medical transformer: Gated axial-attention for medical image segmentation,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, and C. Essert, Eds. Cham: Springer International Publishing, 2021, pp. 36–46.
- Y. Zhang, H. Liu, and Q. Hu, “Transfuse: Fusing transformers and cnns for medical image segmentation,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, and C. Essert, Eds. Cham: Springer International Publishing, 2021, pp. 14–24.
- A. Lin, B. Chen, J. Xu, Z. Zhang, G. Lu, and D. Zhang, “Ds-transunet: Dual swin transformer u-net for medical image segmentation,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–15, 2022.
- Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2021, pp. 10 012–10 022.
- A. Hatamizadeh, Y. Tang, V. Nath, D. Yang, A. Myronenko, B. Landman, H. R. Roth, and D. Xu, “Unetr: Transformers for 3d medical image segmentation,” in 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022, pp. 1748–1758.
- G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.
- A. M. Shaker, M. Maaz, H. Rasheed, S. Khan, M.-H. Yang, and F. S. Khan, “Unetr++: delving into efficient and accurate 3d medical image segmentation,” IEEE Transactions on Medical Imaging, 2024.
- H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention generative adversarial networks,” in Proceedings of the 36th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp. 7354–7363. [Online]. Available: https://proceedings.mlr.press/v97/zhang19d.html
- J. Wang, Y. Zheng, J. Ma, X. Li, C. Wang, J. Gee, H. Wang, and W. Huang, “Information bottleneck-based interpretable multitask network for breast cancer classification and segmentation,” Medical Image Analysis, vol. 83, p. 102687, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1361841522003152
- S. C. Partridge, J. E. Gibbs, Y. Lu, L. J. Esserman, D. Tripathy, D. S. Wolverton, H. S. Rugo, E. S. Hwang, C. A. Ewing, and N. M. Hylton, “Mri measurements of breast tumor volume predict response to neoadjuvant chemotherapy and recurrence-free survival,” American Journal of Roentgenology, vol. 184, no. 6, pp. 1774–1781, 2005, pMID: 15908529. [Online]. Available: https://doi.org/10.2214/ajr.184.6.01841774
- W. Al-Dhabyani, M. Gomaa, H. Khaled, and A. Fahmy, “Dataset of breast ultrasound images,” Data in Brief, vol. 28, p. 104863, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352340919312181
- K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle, L. Tarbox, and F. Prior, “The cancer imaging archive (tcia): Maintaining and operating a public information repository,” Journal of Digital Imaging, vol. 26, no. 6, pp. 1045–1057, Dec 2013. [Online]. Available: https://doi.org/10.1007/s10278-013-9622-7
- R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct 2017.
- J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” in International Conference on Learning Representations, 2021. [Online]. Available: https://openreview.net/forum?id=St1giarCHLP
- C. Lu, Y. Zhou, F. Bao, J. Chen, C. LI, and J. Zhu, “Dpm-solver: A fast ode solver for diffusion probabilistic model sampling in around 10 steps,” in Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35. Curran Associates, Inc., 2022, pp. 5775–5787. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2022/file/260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf
- C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu, “Dpm-solver++: Fast solver for guided sampling of diffusion probabilistic models,” arXiv preprint arXiv:2211.01095, 2022.
- W. Zhao, L. Bai, Y. Rao, J. Zhou, and J. Lu, “Unipc: A unified predictor-corrector framework for fast sampling of diffusion models,” in Advances in Neural Information Processing Systems, A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds., vol. 36. Curran Associates, Inc., 2023, pp. 49 842–49 869. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2023/file/9c2aa1e456ea543997f6927295196381-Paper-Conference.pdf
- J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in Proceedings of the 32nd International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, F. Bach and D. Blei, Eds., vol. 37. Lille, France: PMLR, 07–09 Jul 2015, pp. 2256–2265. [Online]. Available: https://proceedings.mlr.press/v37/sohl-dickstein15.html
- A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in Proceedings of the 38th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, M. Meila and T. Zhang, Eds., vol. 139. PMLR, 18–24 Jul 2021, pp. 8162–8171. [Online]. Available: https://proceedings.mlr.press/v139/nichol21a.html
- Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” arXiv preprint arXiv:2011.13456, 2020.
- H. Cao, C. Tan, Z. Gao, Y. Xu, G. Chen, P.-A. Heng, and S. Z. Li, “A survey on generative diffusion models,” IEEE Transactions on Knowledge and Data Engineering, 2024.
- Y. Xu, M. Deng, X. Cheng, Y. Tian, Z. Liu, and T. Jaakkola, “Restart sampling for improving generative processes,” Advances in Neural Information Processing Systems, vol. 36, pp. 76 806–76 838, 2023.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.