2000 character limit reached
Emotion Recognition with Facial Attention and Objective Activation Functions (2410.17740v1)
Published 23 Oct 2024 in cs.CV and cs.AI
Abstract: In this paper, we study the effect of introducing channel and spatial attention mechanisms, namely SEN-Net, ECA-Net, and CBAM, to existing CNN vision-based models such as VGGNet, ResNet, and ResNetV2 to perform the Facial Emotion Recognition task. We show that not only attention can significantly improve the performance of these models but also that combining them with a different activation function can further help increase the performance of these models.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.