Papers
Topics
Authors
Recent
2000 character limit reached

Optimizing Load Scheduling in Power Grids Using Reinforcement Learning and Markov Decision Processes (2410.17696v1)

Published 23 Oct 2024 in cs.LG

Abstract: Power grid load scheduling is a critical task that ensures the balance between electricity generation and consumption while minimizing operational costs and maintaining grid stability. Traditional optimization methods often struggle with the dynamic and stochastic nature of power systems, especially when faced with renewable energy sources and fluctuating demand. This paper proposes a reinforcement learning (RL) approach using a Markov Decision Process (MDP) framework to address the challenges of dynamic load scheduling. The MDP is defined by a state space representing grid conditions, an action space covering control operations like generator adjustments and storage management, and a reward function balancing economic efficiency and system reliability. We investigate the application of various RL algorithms, from basic Q-Learning to more advanced Deep Q-Networks (DQN) and Actor-Critic methods, to determine optimal scheduling policies. The proposed approach is evaluated through a simulated power grid environment, demonstrating its potential to improve scheduling efficiency and adapt to variable demand patterns. Our results show that the RL-based method provides a robust and scalable solution for real-time load scheduling, contributing to the efficient management of modern power grids.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.