Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Electric Grid Topology and Admittance Estimation: Quantifying Phasor-based Measurement Requirements (2410.17553v2)

Published 23 Oct 2024 in eess.SY and cs.SY

Abstract: In this paper, we quantify voltage and current phasor-based measurement requirements for the unique estimation of the electric grid topology and admittance parameters. Our approach is underpinned by the concept of a rigidity matrix that has been extensively studied in graph rigidity theory. Specifically, we show that the rank of the rigidity matrix is the same as that of a voltage coefficient matrix in a corresponding electric power system. Accordingly, we show that there is a minimum number of measurements required to uniquely estimate the admittance matrix and corresponding grid topology. By means of a numerical example on the IEEE 4-node radial network, we demonstrate that our approach is suitable for applications in electric power grids.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. S. Sgouridis, M. Carbajales-Dale, D. Csala, M. Chiesa, and U. Bardi, “Comparative net energy analysis of renewable electricity and carbon capture and storage,” Nat Energy, vol. 4, p. 456–465, 2019.
  2. P. P. Varaiya, F. F. Wu, and J. W. Bialek, “Smart operation of smart grid: Risk-limiting dispatch,” Proceedings of the IEEE, vol. 99, no. 1, pp. 40–57, 2011.
  3. O. Samuelsson, M. Hemmingsson, A. Nielsen, K. Pedersen, and J. Rasmussen, “Monitoring of power system events at transmission and distribution level,” IEEE Transactions on Power Systems, vol. 21, no. 2, pp. 1007–1008, 2006.
  4. D. Deka, V. Kekatos, and G. Cavraro, “Learning distribution grid topologies: A tutorial,” IEEE Transactions on Smart Grid, vol. 15, no. 1, pp. 999–1013, 2023.
  5. F. Dalavi, M. E. H. Golshan, and N. D. Hatziargyriou, “A review on topology identification methods and applications in distribution networks,” Electric Power Systems Research, vol. 234, 2024.
  6. S. Chanda and A. K. Srivastava, “Defining and enabling resiliency of electric distribution systems with multiple microgrids,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2859–2868, 2016.
  7. Z. Wang and J. Wang, “Self-healing resilient distribution systems based on sectionalization into microgrids,” IEEE Transactions on Power Systems, vol. 30, no. 6, pp. 3139–3149, 2015.
  8. D. Deka, S. Backhaus, and M. Chertkov, “Estimating distribution grid topologies: A graphical learning based approach,” in 2016 Power Systems Computation Conference (PSCC), 2016, pp. 1–7.
  9. G. Cavraro, R. Arghandeh, K. Poolla, and A. von Meier, “Data-Driven Approach for Distribution Network Topology Detection,” IEEE PES General Meeting, pp. 1–5, 2015.
  10. J. Zhao, L. Li, Z. Xu, X. Wang, H. Wang, and X. Shao, “Full-scale distribution system topology identification using markov random field,” IEEE Transactions on Smart Grid, vol. 11, no. 6, pp. 4714–4726, 2020.
  11. J. Yu, Y. Weng, and R. Rajagopal, “Patopa: A data-driven parameter and topology joint estimation framework in distribution grids,” IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 4335–4347, 2018.
  12. O. Ardakanian, V. W. S. Wong, R. Dobbe, S. H. Low, A. von Meier, C. J. Tomlin, and Y. Yuan, “On identification of distribution grids,” IEEE Transactions on Control of Network Systems, vol. 6, no. 3, pp. 950–960, 2019.
  13. Y. Yuan, S. H. Low, O. Ardakanian, and C. J. Tomlin, “Inverse power flow problem,” IEEE Transactions on Control of Network Systems, vol. 10, no. 1, pp. 261–273, 2023.
  14. L. Adair, I. Shames, and M. Cantoni, “Structure in total least squares parameter estimation for electrical networks,” IFAC-PapersOnLine, vol. 51, no. 23, pp. 420–425, 2018.
  15. A. Mishra and R. A. de Callafon, “Recursive estimation of three phase line admittance in electric power networks,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 34–39, 2020.
  16. L. Asimow and B. Roth, “The rigidity of graphs,” Transactions of the American Mathematical Society, vol. 245, pp. 279–289, 1978.
  17. B. Hendrickson, “Conditions for unique graph realization,” SIAM journal on computing, vol. 21, pp. 65–84, 1992.
  18. D. Garamvölgyi, S. J. Gortler, and T. Jordán, “Globally rigid graphs are fully reconstructible,” Forum of Mathematics, Sigma, vol. 10, p. e51, 2022.
  19. S. J. Gortler and D. P. Thurston, “Generic global rigidity in complex and pseudo-euclidean spaces,” Rigidity and symmetry, pp. 131–154, 2014.
  20. T. Jordán and W. Whiteley, “Global rigidity,” in Handbook of Discrete and Computational Geometry.   Chapman and Hall/CRC, 2017, pp. 1661–1694.
  21. T. Jordán, “Combinatorial rigidity: graphs and matroids in the theory of rigid frameworks,” Egerváry Research Group, Budapest, Tech. Rep. TR-2014-12, 2014, egres.elte.hu.
  22. IEEE. 1991 original test feeders. [Online]. Available: https://cmte.ieee.org/pes-testfeeders/resources/

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.