Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Geometric Graph Neural Network Modeling of Human Interactions in Crowded Environments (2410.17409v1)

Published 22 Oct 2024 in cs.LG, cs.AI, cs.CV, cs.RO, cs.SY, and eess.SY

Abstract: Modeling human trajectories in crowded environments is challenging due to the complex nature of pedestrian behavior and interactions. This paper proposes a geometric graph neural network (GNN) architecture that integrates domain knowledge from psychological studies to model pedestrian interactions and predict future trajectories. Unlike prior studies using complete graphs, we define interaction neighborhoods using pedestrians' field of view, motion direction, and distance-based kernel functions to construct graph representations of crowds. Evaluations across multiple datasets demonstrate improved prediction accuracy through reduced average and final displacement error metrics. Our findings underscore the importance of integrating domain knowledge with data-driven approaches for effective modeling of human interactions in crowds.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.