Papers
Topics
Authors
Recent
2000 character limit reached

Quantum Large Language Models via Tensor Network Disentanglers (2410.17397v1)

Published 22 Oct 2024 in quant-ph, cs.AI, and cs.LG

Abstract: We propose a method to enhance the performance of LLMs by integrating quantum computing and quantum-inspired techniques. Specifically, our approach involves replacing the weight matrices in the Self-Attention and Multi-layer Perceptron layers with a combination of two variational quantum circuits and a quantum-inspired tensor network, such as a Matrix Product Operator (MPO). This substitution enables the reproduction of classical LLM functionality by decomposing weight matrices through the application of tensor network disentanglers and MPOs, leveraging well-established tensor network techniques. By incorporating more complex and deeper quantum circuits, along with increasing the bond dimensions of the MPOs, our method captures additional correlations within the quantum-enhanced LLM, leading to improved accuracy beyond classical models while maintaining low memory overhead.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.