Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploring RL-based LLM Training for Formal Language Tasks with Programmed Rewards (2410.17126v1)

Published 22 Oct 2024 in cs.CL, cs.AI, and cs.LG

Abstract: Proximal Policy Optimization (PPO) is commonly used in Reinforcement Learning from Human Feedback to align LLMs with downstream tasks. This paper investigates the feasibility of using PPO for direct reinforcement learning (RL) from explicitly programmed reward signals, as opposed to indirect learning from human feedback via an intermediary reward model. We focus on tasks expressed through formal languages, such as mathematics and programming, where explicit reward functions can be programmed to automatically assess the quality of generated outputs. We apply this approach to a sentiment alignment task, a simple arithmetic task, and a more complex game synthesis task. The sentiment alignment task replicates prior research and serves to validate our experimental setup. Our results show that pure RL-based training for the two formal language tasks is challenging, with success being limited even for the simple arithmetic task. We propose a novel batch-entropy regularization term to aid exploration, although training is not yet entirely stable. Our findings suggest that direct RL training of LLMs may be more suitable for relatively minor changes, such as alignment, than for learning new tasks altogether, even if an informative reward signal can be expressed programmatically.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.