Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Inferentially-Private Private Information (2410.17095v2)

Published 22 Oct 2024 in cs.CR

Abstract: Information disclosure can compromise privacy when revealed information is correlated with private information. We consider the notion of inferential privacy, which measures privacy leakage by bounding the inferential power a Bayesian adversary can gain by observing a released signal. Our goal is to devise an inferentially-private private information structure that maximizes the informativeness of the released signal, following the Blackwell ordering principle, while adhering to inferential privacy constraints. To achieve this, we devise an efficient release mechanism that achieves the inferentially-private Blackwell optimal private information structure for the setting where the private information is binary. Additionally, we propose a programming approach to compute the optimal structure for general cases given the utility function. The design of our mechanisms builds on our geometric characterization of the Blackwell-optimal disclosure mechanisms under privacy constraints, which may be of independent interest.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: