LLMScan: Causal Scan for LLM Misbehavior Detection
Abstract: Despite the success of LLMs across various fields, their potential to generate untruthful, biased and harmful responses poses significant risks, particularly in critical applications. This highlights the urgent need for systematic methods to detect and prevent such misbehavior. While existing approaches target specific issues such as harmful responses, this work introduces LLMScan, an innovative LLM monitoring technique based on causality analysis, offering a comprehensive solution. LLMScan systematically monitors the inner workings of an LLM through the lens of causal inference, operating on the premise that the LLM's `brain' behaves differently when misbehaving. By analyzing the causal contributions of the LLM's input tokens and transformer layers, LLMScan effectively detects misbehavior. Extensive experiments across various tasks and models reveal clear distinctions in the causal distributions between normal behavior and misbehavior, enabling the development of accurate, lightweight detectors for a variety of misbehavior detection tasks.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.