Papers
Topics
Authors
Recent
2000 character limit reached

Conjuring Semantic Similarity (2410.16431v2)

Published 21 Oct 2024 in cs.AI

Abstract: The semantic similarity between sample expressions measures the distance between their latent 'meaning'. Such meanings are themselves typically represented by textual expressions, often insufficient to differentiate concepts at fine granularity. We propose a novel approach whereby the semantic similarity among textual expressions is based not on other expressions they can be rephrased as, but rather based on the imagery they evoke. While this is not possible with humans, generative models allow us to easily visualize and compare generated images, or their distribution, evoked by a textual prompt. Therefore, we characterize the semantic similarity between two textual expressions simply as the distance between image distributions they induce, or 'conjure.' We show that by choosing the Jensen-Shannon divergence between the reverse-time diffusion stochastic differential equations (SDEs) induced by each textual expression, this can be directly computed via Monte-Carlo sampling. Our method contributes a novel perspective on semantic similarity that not only aligns with human-annotated scores, but also opens up new avenues for the evaluation of text-conditioned generative models while offering better interpretability of their learnt representations.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.