Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 32 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

LLaVA-KD: A Framework of Distilling Multimodal Large Language Models (2410.16236v3)

Published 21 Oct 2024 in cs.CV

Abstract: The success of LLMs has inspired the development of Multimodal LLMs (MLLMs) for unified understanding of vision and language. However, the increasing model size and computational complexity of large-scale MLLMs (l-MLLMs) limit their use in resource-constrained scenarios. Although small-scale MLLMs (s-MLLMs) are designed to reduce computational costs, they typically suffer from performance degradation. To mitigate this limitation, we propose a novel LLaVA-KD framework to transfer knowledge from l-MLLMs to s-MLLMs. Specifically, we introduce Multimodal Distillation (MDist) to transfer teacher model's robust representations across both visual and linguistic modalities, and Relation Distillation (RDist) to transfer teacher model's ability to capture visual token relationships. Additionally, we propose a three-stage training scheme to fully exploit the potential of the proposed distillation strategy: 1) Distilled Pre-Training to strengthen the alignment between visual-linguistic representations in s-MLLMs, 2) Supervised Fine-Tuning to equip the s-MLLMs with multimodal understanding capacity, and 3) Distilled Fine-Tuning to refine s-MLLM's knowledge. Our approach significantly improves s-MLLMs performance without altering the model architecture. Extensive experiments and ablation studies validate the effectiveness of each proposed component. Code will be available at https://github.com/Fantasyele/LLaVA-KD.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube