Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

TS-ACL: Closed-Form Solution for Time Series-oriented Continual Learning (2410.15954v3)

Published 21 Oct 2024 in cs.LG and cs.AI

Abstract: Time series classification underpins critical applications such as healthcare diagnostics and gesture-driven interactive systems in multimedia scenarios. However, time series class-incremental learning (TSCIL) faces two major challenges: catastrophic forgetting and intra-class variations. Catastrophic forgetting occurs because gradient-based parameter update strategies inevitably erase past knowledge. And unlike images, time series data exhibits subject-specific patterns, also known as intra-class variations, which refer to differences in patterns observed within the same class. While exemplar-based methods fail to cover diverse variation with limited samples, existing exemplar-free methods lack explicit mechanisms to handle intra-class variations. To address these two challenges, we propose TS-ACL, which leverages a gradient-free closed-form solution to avoid the catastrophic forgetting problem inherent in gradient-based optimization methods while simultaneously learning global distributions to resolve intra-class variations. Additionally, it provides privacy protection and efficiency. Extensive experiments on five benchmark datasets covering various sensor modalities and tasks demonstrate that TS-ACL achieves performance close to joint training on four datasets, outperforming existing methods and establishing a new state-of-the-art (SOTA) for TSCIL.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube