Trace-Distance based End-to-End Entanglement Fidelity with Information Preservation in Quantum Networks (2410.15603v1)
Abstract: Quantum networks hold the potential to revolutionize a variety of fields by surpassing the capabilities of their classical counterparts. Many of these applications necessitate the sharing of high-fidelity entangled pairs among communicating parties. However, the inherent nature of entanglement leads to an exponential decrease in fidelity as the distance between quantum nodes increases. This phenomenon makes it challenging to generate high-fidelity entangled pairs and preserve information in quantum networks. To tackle this problem, we utilized two strategies to ensure high-fidelity entangled pairs and information preservation within a quantum network. First, we use closeness centrality as a metric to identify the closest nodes in the network. Second, we introduced the trace-distance based path purification (TDPP) algorithm, specifically designed to enable information preservation and path purification entanglement routing. This algorithm identifies the shortest path within quantum networks using closeness centrality and integrates trace-distance computations for distinguishing quantum states and maintaining end-to-end (E2E) entanglement fidelity. Simulation results demonstrate that the proposed algorithm improves network throughput and E2E fidelity while preserving information compared to existing methods.
- L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, 1996, pp. 212–219.
- P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings 35th annual symposium on foundations of computer science, 1994, pp. 124–134.
- L. Bugalho, B. C. Coutinho, F. A. Monteiro, and Y. Omar, “Distributing multipartite entanglement over noisy quantum networks,” quantum, vol. 7, p. 920, 2023.
- C. Li, T. Li, Y.-X. Liu, and P. Cappellaro, “Effective routing design for remote entanglement generation on quantum networks,” npj Quantum Information, vol. 7, no. 1, pp. 1–12, 2021.
- Y. Zhao and C. Qiao, “Redundant entanglement provisioning and selection for throughput maximization in quantum networks,” in Proceedings of IEEE Conference on Computer Communications, 2021, pp. 1–10.
- M. Caleffi and A. S. Cacciapuoti, “Quantum switch for the quantum internet: Noiseless communications through noisy channels,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 3, pp. 575–588, 2020.
- S. Pirandola, “End-to-end capacities of a quantum communication network,” Communications Physics, vol. 2, no. 1, pp. 1–10, 2019.
- M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. Englund, and S. Guha, “Routing entanglement in the quantum internet,” npj Quantum Information, vol. 5, no. 1, p. 25, 2019.
- A. Patil, M. Pant, D. Englund, D. Towsley, and S. Guha, “Entanglement generation in a quantum network at distance-independent rate,” npj Quantum Information, vol. 8, no. 1, pp. 1–9, 2022.
- M. Caleffi, “Optimal routing for quantum networks,” IEEE Access, vol. 5, pp. 22 299–22 312, 2017.
- S. Santos, F. A. Monteiro, B. C. Coutinho, and Y. Omar, “Shortest path finding in quantum networks with quasi-linear complexity,” IEEE Access, vol. 11, pp. 7180–7194, 2023.
- M. Zukowski, A. Zeilinger, M. Horne, and A. Ekert, “Event-ready-detectors bell experiment via entanglement swapping.” Physical review letters, vol. 71, no. 26, 1993.
- M. Schlosshauer, “Quantum decoherence,” Physics Reports, vol. 831, pp. 1–57, 2019.
- J. Li, M. Wang, K. Xue, R. Li, N. Yu, Q. Sun, and J. Lu, “Fidelity-guaranteed entanglement routing in quantum networks,” IEEE Transactions on Communications, vol. 70, no. 10, pp. 6748–6763, 2022.
- A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gherardini, and G. Bianchi, “Quantum internet: networking challenges in distributed quantum computing,” IEEE Network, vol. 34, no. 1, pp. 137–143, 2019.
- Y. Zhao, G. Zhao, and C. Qiao, “E2E fidelity aware routing and purification for throughput maximization in quantum networks,” in Proceedings of IEEE Conference on Computer Communications, 2022.
- M. F. Mor-Ruiz and W. Dür, “Influence of noise in entanglement-based quantum networks,” IEEE Journal on Selected Areas in Communications, 2024.
- Q. Jia, K. Xue, Z. Li, M. Zheng, D. S. Wei, and N. Yu, “An improved qkd protocol without public announcement basis using periodically derived basis,” Quantum Information Processing, vol. 20, no. 2, pp. 1–11, 2021.
- E. Q. V. Martins, “On a multicriteria shortest path problem,” European Journal of Operational Research, vol. 16, no. 2, pp. 236–245, 1984.
- C. Elliott, “Building the quantum network,” New Journal of Physics, vol. 4, no. 1, p. 46, 2002.
- S. Shi and C. Qian, “Concurrent entanglement routing for quantum networks: Model and designs,” in Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication, 2020, pp. 62–75.
- J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, B. Li, and H. Dai, “Satellite-based entanglement distribution over 1200 kilometers,” Science, vol. 356, no. 6343, pp. 1140–1144, 2017.
- B. Kar and P. Kumar, “Routing protocols for quantum networks: Overview and challenges,” arXiv preprint arXiv:2305.00708, 2023.
- F. Hahn, A. Pappa, and J. Eisert, “Quantum network routing and local complementation,” npj Quantum Information, vol. 5, no. 1, pp. 1–7, 2019.
- P.-Y. Li, C. Liu, Z.-Q. Zhou, X. Liu, T. Tu, T.-S. Yang, Z.-F. Li, Y. Ma, J. Hu, P.-J. Liang et al., “Hyperfine structure and coherent dynamics of rare-earth spins explored with electron-nuclear double resonance at subkelvin temperatures,” Physical Review Applied, vol. 13, no. 2, p. 024080, 2020.
- A. S. Cacciapuoti, M. Caleffi, R. Van Meter, and L. Hanzo, “When entanglement meets classical communications: Quantum teleportation for the quantum internet,” IEEE Transactions on Communications, vol. 68, no. 6, pp. 3808–3833, 2020.
- R. Van Meter, T. D. Ladd, W. J. Munro, and K. Nemoto, “System design for a long-line quantum repeater,” IEEE/ACM Transactions On Networking, vol. 17, no. 3, pp. 1002–1013, 2008.
- S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, “Fundamental limits of repeaterless quantum communications,” Nature Communications, vol. 8, no. 1, pp. 1–15, 2017.
- S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “SNDlib 1.0—survivable network design library,” Networks: An International Journal, vol. 55, no. 3, pp. 276–286, 2010.
- R. Van Meter and J. Touch, “Designing quantum repeater networks,” IEEE Communications Magazine, vol. 51, no. 8, pp. 64–71, 2013.
- A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nature photonics, vol. 3, no. 12, pp. 706–714, 2009.
- C. Liu, T.-X. Zhu, M.-X. Su, Y.-Z. Ma, Z.-Q. Zhou, C.-F. Li, and G.-C. Guo, “On-demand quantum storage of photonic qubits in an on-chip waveguide,” Physical Review Letters, vol. 125, no. 26, p. 260504, 2020.
- G. Vardoyan, S. Guha, P. Nain, and D. Towsley, “On the stochastic analysis of a quantum entanglement switch,” ACM SIGMETRICS Performance Evaluation Review, vol. 47, no. 2, pp. 27–29, 2019.
- L. Gyongyosi and S. Imre, “Adaptive routing for quantum memory failures in the quantum internet,” Quantum Information Processing, vol. 18, no. 2, pp. 1–21, 2019.
- Y. Xiang and S.-J. Xiong, “Entanglement fidelity and measurement of entanglement preservation in quantum processes,” Physical Review A, vol. 76, no. 1, p. 014301, 2007.
- H.-P. Breuer, E.-M. Laine, and J. Piilo, “Measure for the degree of non-Markovian behavior of quantum processes in open systems,” Physical review letters, vol. 103, no. 21, p. 210401, 2009.
- J. Y. Yen, “Finding the K𝐾Kitalic_K shortest loopless paths in a network,” Management Science, pp. 712–716, 1971.
- W. Dür and H.-J. Briegel, “Entanglement purification for quantum computation,” Physical review letters, vol. 90, no. 6, p. 067901, 2003.
- Y. Li, H. Zhang, C. Zhang, T. Huang, and F. R. Yu, “A survey of quantum internet protocols from a layered perspective,” IEEE Communications Surveys & Tutorials, 2024.
- A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpędek, M. Pompili, A. Stolk, P. Pawełczak, R. Knegjens, J. de Oliveira Filho et al., “A link layer protocol for quantum networks,” in Proceedings of the ACM Special Interest Group on Data Communication, 2019, pp. 159–173.
- W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Physical Review A, vol. 59, no. 1, p. 169, 1999.
- R. Bassoli, H. Boche, C. Deppe, R. Ferrara, F. H. Fitzek, G. Janssen, S. Saeedinaeeni, R. Bassoli, H. Boche, C. Deppe et al., “Quantum communication networks: design and simulation,” Quantum Communication Networks, pp. 187–209, 2021.
- J. L. W. V. Jensen, “Surles fonctions convexes et les inégalités entre les valeurs moyennes,” Acta mathematica, vol. 30, no. 1, pp. 175–193, 1906.
- J. A. Miszczak, Z. Puchała, P. Horodecki, A. Uhlmann, and K. Życzkowski, “Sub–and super–fidelity as bounds for quantum fidelity,” Quantum Information and Computing, vol. 9, no. 1, p. 103, 2009.
- F. Bloch, M. O. Jackson, and P. Tebaldi, “Centrality measures in networks,” Social Choice and Welfare, vol. 61, no. 2, pp. 413–453, 2023.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.