Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Generalized Probabilistic Attention Mechanism in Transformers (2410.15578v1)

Published 21 Oct 2024 in cs.LG and cs.CL

Abstract: The Transformer architecture has become widely adopted due to its demonstrated success, attributed to the attention mechanism at its core. Despite these successes, the attention mechanism of Transformers is associated with two well-known issues: rank-collapse and gradient vanishing. In this paper, we present a theoretical analysis that it is inherently difficult to address both issues simultaneously in the conventional attention mechanism. To handle these issues, we introduce a novel class of attention mechanism, referred to as generalized probabilistic attention mechanism (GPAM), and its dual-attention implementation within the Transformer architecture. Unlike conventional attention mechanisms, GPAM allows for negative attention scores while preserving a fixed total sum. We provide theoretical evidence that the proposed dual-attention GPAM (daGPAM) effectively mitigates both the rank-collapse and gradient vanishing issues which are difficult to resolve simultaneously with the conventional attention mechanisms. Furthermore, we empirically validate this theoretical evidence, demonstrating the superiority of daGPAM compared to other alternative attention mechanisms that were proposed to address the same issues. Additionally, we demonstrate the practical benefits of GPAM in natural language processing tasks, such as LLMing and neural machine translation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube