Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Neural Search Space in Gboard Decoder (2410.15575v1)

Published 21 Oct 2024 in cs.CL

Abstract: Gboard Decoder produces suggestions by looking for paths that best match input touch points on the context aware search space, which is backed by the language Finite State Transducers (FST). The language FST is currently an N-gram LLM (LM). However, N-gram LMs, limited in context length, are known to have sparsity problem under device model size constraint. In this paper, we propose \textbf{Neural Search Space} which substitutes the N-gram LM with a Neural Network LM (NN-LM) and dynamically constructs the search space during decoding. Specifically, we integrate the long range context awareness of NN-LM into the search space by converting its outputs given context, into the language FST at runtime. This involves language FST structure redesign, pruning strategy tuning, and data structure optimizations. Online experiments demonstrate improved quality results, reducing Words Modified Ratio by [0.26\%, 1.19\%] on various locales with acceptable latency increases. This work opens new avenues for further improving keyboard decoding quality by enhancing neural LM more directly.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.