Papers
Topics
Authors
Recent
Search
2000 character limit reached

SEA: State-Exchange Attention for High-Fidelity Physics Based Transformers

Published 20 Oct 2024 in cs.LG and cs.AI | (2410.15495v2)

Abstract: Current approaches using sequential networks have shown promise in estimating field variables for dynamical systems, but they are often limited by high rollout errors. The unresolved issue of rollout error accumulation results in unreliable estimations as the network predicts further into the future, with each step's error compounding and leading to an increase in inaccuracy. Here, we introduce the State-Exchange Attention (SEA) module, a novel transformer-based module enabling information exchange between encoded fields through multi-head cross-attention. The cross-field multidirectional information exchange design enables all state variables in the system to exchange information with one another, capturing physical relationships and symmetries between fields. Additionally, we introduce an efficient ViT-like mesh autoencoder to generate spatially coherent mesh embeddings for a large number of meshing cells. The SEA integrated transformer demonstrates the state-of-the-art rollout error compared to other competitive baselines. Specifically, we outperform PbGMR-GMUS Transformer-RealNVP and GMR-GMUS Transformer, with a reduction in error of 88% and 91%, respectively. Furthermore, we demonstrate that the SEA module alone can reduce errors by 97% for state variables that are highly dependent on other states of the system. The repository for this work is available at: https://github.com/ParsaEsmati/SEA

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.