Papers
Topics
Authors
Recent
Search
2000 character limit reached

Explainability of Point Cloud Neural Networks Using SMILE: Statistical Model-Agnostic Interpretability with Local Explanations

Published 20 Oct 2024 in cs.LG, cs.AI, and cs.CV | (2410.15374v1)

Abstract: In today's world, the significance of explainable AI (XAI) is growing in robotics and point cloud applications, as the lack of transparency in decision-making can pose considerable safety risks, particularly in autonomous systems. As these technologies are integrated into real-world environments, ensuring that model decisions are interpretable and trustworthy is vital for operational reliability and safety assurance. This study explores the implementation of SMILE, a novel explainability method originally designed for deep neural networks, on point cloud-based models. SMILE builds on LIME by incorporating Empirical Cumulative Distribution Function (ECDF) statistical distances, offering enhanced robustness and interpretability, particularly when the Anderson-Darling distance is used. The approach demonstrates superior performance in terms of fidelity loss, R2 scores, and robustness across various kernel widths, perturbation numbers, and clustering configurations. Moreover, this study introduces a stability analysis for point cloud data using the Jaccard index, establishing a new benchmark and baseline for model stability in this field. The study further identifies dataset biases in the classification of the 'person' category, emphasizing the necessity for more comprehensive datasets in safety-critical applications like autonomous driving and robotics. The results underscore the potential of advanced explainability models and highlight areas for future research, including the application of alternative surrogate models and explainability techniques in point cloud data.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.