Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FIT-GNN: Faster Inference Time for GNNs Using Coarsening (2410.15001v2)

Published 19 Oct 2024 in cs.LG and stat.ML

Abstract: Scalability of Graph Neural Networks (GNNs) remains a significant challenge, particularly when dealing with large-scale graphs. To tackle this, coarsening-based methods are used to reduce the graph into a smaller graph, resulting in faster computation. Nonetheless, prior research has not adequately addressed the computational costs during the inference phase. This paper presents a novel approach to improve the scalability of GNNs by reducing computational burden during both training and inference phases. We demonstrate two different methods (Extra-Nodes and Cluster-Nodes). Our study also proposes a unique application of the coarsening algorithm for graph-level tasks, including graph classification and graph regression, which have not yet been explored. We conduct extensive experiments on multiple benchmark datasets in the order of $100K$ nodes to evaluate the performance of our approach. The results demonstrate that our method achieves competitive performance in tasks involving classification and regression on nodes and graphs, compared to traditional GNNs, while having single-node inference times that are orders of magnitude faster. Furthermore, our approach significantly reduces memory consumption, allowing training and inference on low-resource devices where traditional methods struggle.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: