Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Adversarial Score identity Distillation: Rapidly Surpassing the Teacher in One Step (2410.14919v4)

Published 19 Oct 2024 in cs.CV and cs.LG

Abstract: Score identity Distillation (SiD) is a data-free method that has achieved SOTA performance in image generation by leveraging only a pretrained diffusion model, without requiring any training data. However, its ultimate performance is constrained by how accurate the pretrained model captures the true data scores at different stages of the diffusion process. In this paper, we introduce SiDA (SiD with Adversarial Loss), which not only enhances generation quality but also improves distillation efficiency by incorporating real images and adversarial loss. SiDA utilizes the encoder from the generator's score network as a discriminator, allowing it to distinguish between real images and those generated by SiD. The adversarial loss is batch-normalized within each GPU and then combined with the original SiD loss. This integration effectively incorporates the average "fakeness" per GPU batch into the pixel-based SiD loss, enabling SiDA to distill a single-step generator. SiDA converges significantly faster than its predecessor when distilled from scratch, and swiftly improves upon the original model's performance during fine-tuning from a pre-distilled SiD generator. This one-step adversarial distillation method establishes new benchmarks in generation performance when distilling EDM diffusion models, achieving FID scores of 1.110 on ImageNet 64x64. When distilling EDM2 models trained on ImageNet 512x512, our SiDA method surpasses even the largest teacher model, EDM2-XXL, which achieved an FID of 1.81 using classifier-free guidance (CFG) and 63 generation steps. In contrast, SiDA achieves FID scores of 2.156 for size XS, 1.669 for S, 1.488 for M, 1.413 for L, 1.379 for XL, and 1.366 for XXL, all without CFG and in a single generation step. These results highlight substantial improvements across all model sizes. Our code is available at https://github.com/mingyuanzhou/SiD/tree/sida.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.