Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Domain Adaptive Safety Filters via Deep Operator Learning (2410.14528v1)

Published 18 Oct 2024 in eess.SY, cs.LG, cs.RO, and cs.SY

Abstract: Learning-based approaches for constructing Control Barrier Functions (CBFs) are increasingly being explored for safety-critical control systems. However, these methods typically require complete retraining when applied to unseen environments, limiting their adaptability. To address this, we propose a self-supervised deep operator learning framework that learns the mapping from environmental parameters to the corresponding CBF, rather than learning the CBF directly. Our approach leverages the residual of a parametric Partial Differential Equation (PDE), where the solution defines a parametric CBF approximating the maximal control invariant set. This framework accommodates complex safety constraints, higher relative degrees, and actuation limits. We demonstrate the effectiveness of the method through numerical experiments on navigation tasks involving dynamic obstacles.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.