Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

PLMTrajRec: A Scalable and Generalizable Trajectory Recovery Method with Pre-trained Language Models (2410.14281v2)

Published 18 Oct 2024 in cs.LG

Abstract: Spatiotemporal trajectory data is crucial for various applications. However, issues such as device malfunctions and network instability often cause sparse trajectories, leading to lost detailed movement information. Recovering the missing points in sparse trajectories to restore the detailed information is thus essential. Despite recent progress, several challenges remain. First, the lack of large-scale dense trajectory data makes it difficult to train a trajectory recovery model from scratch. Second, the varying spatiotemporal correlations in sparse trajectories make it hard to generalize recovery across different sampling intervals. Third, the lack of location information complicates the extraction of road conditions for missing points. To address these challenges, we propose a novel trajectory recovery model called PLMTrajRec. It leverages the scalability of a pre-trained LLM (PLM) and can be fine-tuned with only a limited set of dense trajectories. To handle different sampling intervals in sparse trajectories, we first convert each trajectory's sampling interval and movement features into natural language representations, allowing the PLM to recognize its interval. We then introduce a trajectory encoder to unify trajectories of varying intervals into a single interval and capture their spatiotemporal relationships. To obtain road conditions for missing points, we propose an area flow-guided implicit trajectory prompt, which models road conditions by collecting traffic flows in each region. We also introduce a road condition passing mechanism that uses observed points' road conditions to infer those of the missing points. Experiments on two public trajectory datasets with three sampling intervals each demonstrate the effectiveness, scalability, and generalization ability of PLMTrajRec.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube