Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Addressing Blind Guessing: Calibration of Selection Bias in Multiple-Choice Question Answering by Video Language Models (2410.14248v2)

Published 18 Oct 2024 in cs.CL

Abstract: Evaluating Video LLMs (VLMs) is a challenging task. Due to its transparency, Multiple-Choice Question Answering (MCQA) is widely used to measure the performance of these models through accuracy. However, existing MCQA benchmarks fail to capture the full reasoning capabilities of VLMs due to selection bias, when models disproportionately favor certain answer options based on positional patterns observed during training. In this work, we conduct a comprehensive empirical analysis of several VLM architectures across major datasets designed to assess complex video-focused reasoning. We identify where the bias is most pronounced and demonstrate to what extent model responses reflect genuine understanding of video content and related questions, as opposed to reliance on arbitrary patterns or superficial cues, such as answer position. By decomposing the MCQA task and adapting fairness bias metrics to VLMs, we introduce a post-processing calibration technique BOLD to balance this bias. Our results show that reducing selection bias improves not only debiasing metrics but also overall model performance, including Accuracy and F1 Mean score. Our method, by suppressing "blind guessing", offers a more cost- and time-effective approach to mitigating selection bias compared to existing techniques. This study represents the first focused investigation of selection bias in video-to-text LLM-powered models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube