LabSafety Bench: Benchmarking LLMs on Safety Issues in Scientific Labs (2410.14182v3)
Abstract: AI is revolutionizing scientific research, yet its growing integration into laboratory environments presents critical safety challenges. While LLMs increasingly assist in tasks ranging from procedural guidance to autonomous experiment orchestration, an "illusion of understanding" may lead researchers to overestimate their reliability. Such overreliance is particularly dangerous in high-stakes laboratory settings, where failures in hazard identification or risk assessment can result in severe accidents. To address these concerns, we propose the Laboratory Safety Benchmark (LabSafety Bench), a comprehensive framework that evaluates LLMs and vision LLMs (VLMs) on their ability to identify potential hazards, assess risks, and predict the consequences of unsafe actions in lab environments. LabSafety Bench comprises 765 multiple-choice questions aligned with US Occupational Safety and Health Administration (OSHA) protocols, along with 404 realistic laboratory scenarios featuring dual evaluation tasks: the Hazards Identification Test and the Consequence Identification Test, with 3128 open-ended questions in total. Evaluations across eight proprietary models, seven open-weight LLMs, and four VLMs reveal that, despite advanced performance on structured assessments, no model achieves the safety threshold required for reliable operation -- none scoring above 70% on the Hazards Identification Test. Moreover, while proprietary models tend to excel in multiple-choice evaluations, their performance in open-ended, real-world scenario responses is comparable to that of open-source models. These findings underscore the urgent need for specialized evaluation frameworks to ensure the safe and responsible deployment of AI in laboratory settings.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.