Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ST-MoE-BERT: A Spatial-Temporal Mixture-of-Experts Framework for Long-Term Cross-City Mobility Prediction (2410.14099v1)

Published 18 Oct 2024 in cs.LG and cs.AI

Abstract: Predicting human mobility across multiple cities presents significant challenges due to the complex and diverse spatial-temporal dynamics inherent in different urban environments. In this study, we propose a robust approach to predict human mobility patterns called ST-MoE-BERT. Compared to existing methods, our approach frames the prediction task as a spatial-temporal classification problem. Our methodology integrates the Mixture-of-Experts architecture with BERT model to capture complex mobility dynamics and perform the downstream human mobility prediction task. Additionally, transfer learning is integrated to solve the challenge of data scarcity in cross-city prediction. We demonstrate the effectiveness of the proposed model on GEO-BLEU and DTW, comparing it to several state-of-the-art methods. Notably, ST-MoE-BERT achieves an average improvement of 8.29%.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: