Papers
Topics
Authors
Recent
2000 character limit reached

LLMs are Biased Teachers: Evaluating LLM Bias in Personalized Education (2410.14012v2)

Published 17 Oct 2024 in cs.CL and cs.CY

Abstract: With the increasing adoption of LLMs in education, concerns about inherent biases in these models have gained prominence. We evaluate LLMs for bias in the personalized educational setting, specifically focusing on the models' roles as "teachers." We reveal significant biases in how models generate and select educational content tailored to different demographic groups, including race, ethnicity, sex, gender, disability status, income, and national origin. We introduce and apply two bias score metrics--Mean Absolute Bias (MAB) and Maximum Difference Bias (MDB)--to analyze 9 open and closed state-of-the-art LLMs. Our experiments, which utilize over 17,000 educational explanations across multiple difficulty levels and topics, uncover that models potentially harm student learning by both perpetuating harmful stereotypes and reversing them. We find that bias is similar for all frontier models, with the highest MAB along income levels while MDB is highest relative to both income and disability status. For both metrics, we find the lowest bias exists for sex/gender and race/ethnicity.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.