Papers
Topics
Authors
Recent
2000 character limit reached

GBCT: An Efficient and Adaptive Granular-Ball Clustering Algorithm for Complex Data (2410.13917v1)

Published 17 Oct 2024 in cs.LG

Abstract: Traditional clustering algorithms often focus on the most fine-grained information and achieve clustering by calculating the distance between each pair of data points or implementing other calculations based on points. This way is not inconsistent with the cognitive mechanism of "global precedence" in human brain, resulting in those methods' bad performance in efficiency, generalization ability and robustness. To address this problem, we propose a new clustering algorithm called granular-ball clustering (GBCT) via granular-ball computing. Firstly, GBCT generates a smaller number of granular-balls to represent the original data, and forms clusters according to the relationship between granular-balls, instead of the traditional point relationship. At the same time, its coarse-grained characteristics are not susceptible to noise, and the algorithm is efficient and robust; besides, as granular-balls can fit various complex data, GBCT performs much better in non-spherical data sets than other traditional clustering methods. The completely new coarse granularity representation method of GBCT and cluster formation mode can also used to improve other traditional methods.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.