A Subsequence Approach to Topological Data Analysis for Irregularly-Spaced Time Series (2410.13723v1)
Abstract: A time-delay embedding (TDE), grounded in the framework of Takens's Theorem, provides a mechanism to represent and analyze the inherent dynamics of time-series data. Recently, topological data analysis (TDA) methods have been applied to study this time series representation mainly through the lens of persistent homology. Current literature on the fusion of TDE and TDA are adept at analyzing uniformly-spaced time series observations. This work introduces a novel {\em subsequence} embedding method for irregularly-spaced time-series data. We show that this method preserves the original state space topology while reducing spurious homological features. Theoretical stability results and convergence properties of the proposed method in the presence of noise and varying levels of irregularity in the spacing of the time series are established. Numerical studies and an application to real data illustrates the performance of the proposed method.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.