Papers
Topics
Authors
Recent
2000 character limit reached

Cellular automaton model of self-healing (2410.13689v1)

Published 17 Oct 2024 in nlin.CG

Abstract: We propose a simple cellular automaton model of a self-healing system and investigate its properties. In the model, the substrate is a two-dimensional checkerboard configuration which can be damaged by changing values of a finite number of sites. The cellular automaton we consider is a checkerboard voting rule, a binary rule with Moore neighbourhood which is topologically conjugate to majority voting rule. For a single color damage (when only cells in the same state are modified), the rule always fixes the damage. For a general damage, when it is localized inside a $3 \times 3$ square, the rule also fixes it always. When the damage is inside of a larger $n \times n$ square, the efficiency of the rule in fixing the damage becomes smaller than $100\%$, but it remains better than $98\%$ for $n \leq 5$ and better than $75 \%$ for $n\leq 7$. We show that in the limit of infinite $n$ the efficiency tends to zero.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.