Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Logarithmic Sobolev inequality on non-compact self-shrinkers (2410.13601v1)

Published 17 Oct 2024 in math.AP and math.DG

Abstract: In the paper we establish an optimal logarithmic Sobolev inequality for complete, non-compact, properly embedded self-shrinkers in the Euclidean space, which generalizes a recent result of Brendle \cite{Brendle22} for closed self-shrinkers. We first provide a proof for the logarithmic Sobolev inequality in the Euclidean space by using the Alexandrov-Bakelman-Pucci (ABP) method. Then we use this approach to show an optimal logarithmic Sobolev inequality for complete, non-compact, properly embedded self-shrinkers in the Euclidean space, which is a sharp version of the result of Ecker in \cite{Ecker}. The proof is a noncompact modification of Brendle's proof for closed submanifolds and has a big potential to provide new inequalities in noncompact manifolds.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.