Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Local Intertwining Relations and Co-tempered $A$-packets of Classical Groups (2410.13504v1)

Published 17 Oct 2024 in math.NT and math.RT

Abstract: The local intertwining relation is an identity that gives precise information about the action of normalized intertwining operators on parabolically induced representations. We prove several instances of the local intertwining relation for quasi-split classical groups and the twisted general linear group, as they are required in the inductive proof of the endoscopic classification for quasi-split classical groups due to Arthur and Mok. In addition, we construct the co-tempered local $A$-packets by Aubert duality and verify their key properties by purely local means, which provide the seed cases needed as an input to the inductive proof. Together with further technical results that we establish, this makes the endoscopic classification conditional only on the validity of the twisted weighted fundamental lemma.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 15 likes.

Upgrade to Pro to view all of the tweets about this paper: