Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Similarity-Dissimilarity Loss for Multi-label Supervised Contrastive Learning (2410.13439v4)

Published 17 Oct 2024 in cs.LG, cs.CL, and cs.CV

Abstract: Supervised contrastive learning has achieved remarkable success by leveraging label information; however, determining positive samples in multi-label scenarios remains a critical challenge. In multi-label supervised contrastive learning (MSCL), multi-label relations are not yet fully defined, leading to ambiguity in identifying positive samples and formulating contrastive loss functions to construct the representation space. To address these challenges, we: (i) first define five distinct multi-label relations in MSCL to systematically identify positive samples, (ii) introduce a novel Similarity-Dissimilarity Loss that dynamically re-weights samples through computing the similarity and dissimilarity factors between positive samples and given anchors based on multi-label relations, and (iii) further provide theoretical grounded proofs for our method through rigorous mathematical analysis that supports the formulation and effectiveness of the proposed loss function. We conduct the experiments across both image and text modalities, and extend the evaluation to medical domain. The results demonstrate that our method consistently outperforms baselines in a comprehensive evaluation, confirming its effectiveness and robustness. Code is available at: https://github.com/guangminghuang/similarity-dissimilarity-loss.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.