On Debiasing Text Embeddings Through Context Injection (2410.12874v2)
Abstract: Current advances in NLP have made it increasingly feasible to build applications leveraging textual data. Generally, the core of these applications rely on having a good semantic representation of text into vectors, via embedding models. However, it has been shown that these embeddings capture and perpetuate biases already present in text. While a few techniques have been proposed to debias embeddings, they do not take advantage of the recent advances in context understanding of modern embedding models. In this paper, we fill this gap by conducting a review of 19 embedding models by quantifying their biases and how well they respond to context injection as a mean of debiasing. We show that higher performing models are more prone to capturing biases, but are also better at incorporating context. Surprisingly, we find that while models can easily embed affirmative semantics, they fail at embedding neutral semantics. Finally, in a retrieval task, we show that biases in embeddings can lead to non-desirable outcomes. We use our new-found insights to design a simple algorithm for top $k$ retrieval, where $k$ is dynamically selected. We show that our algorithm is able to retrieve all relevant gendered and neutral chunks.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.