Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Global Censored Quantile Random Forest (2410.12209v1)

Published 16 Oct 2024 in stat.ML, cs.LG, and stat.ME

Abstract: In recent years, censored quantile regression has enjoyed an increasing popularity for survival analysis while many existing works rely on linearity assumptions. In this work, we propose a Global Censored Quantile Random Forest (GCQRF) for predicting a conditional quantile process on data subject to right censoring, a forest-based flexible, competitive method able to capture complex nonlinear relationships. Taking into account the randomness in trees and connecting the proposed method to a randomized incomplete infinite degree U-process (IDUP), we quantify the prediction process' variation without assuming an infinite forest and establish its weak convergence. Moreover, feature importance ranking measures based on out-of-sample predictive accuracy are proposed. We demonstrate the superior predictive accuracy of the proposed method over a number of existing alternatives and illustrate the use of the proposed importance ranking measures on both simulated and real data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.