2000 character limit reached
Efficient, Accurate and Stable Gradients for Neural ODEs (2410.11648v2)
Published 15 Oct 2024 in cs.LG and stat.ML
Abstract: Training Neural ODEs requires backpropagating through an ODE solve. The state-of-the-art backpropagation method is recursive checkpointing that balances recomputation with memory cost. Here, we introduce a class of algebraically reversible ODE solvers that significantly improve upon both the time and memory cost of recursive checkpointing. The reversible solvers presented calculate exact gradients, are high-order and numerically stable -- strictly improving on previous reversible architectures.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.