Papers
Topics
Authors
Recent
2000 character limit reached

E-structures and almost regular Poisson manifolds (2410.11641v2)

Published 15 Oct 2024 in math.SG

Abstract: In recent years, $b$-symplectic manifolds have become important structures in the study of symplectic geometry, serving as Poisson manifolds that retain symplectic properties away from a hypersurface. Inspired by this rich landscape, $E$-structures were introduced by Nest and Tsygan in \cite{NT2} as a comprehensive framework for exploring generalizations of $b$-structures. This paper initiates a deeper investigation into their Poisson facets, building on foundational work by \cite{MS21}. We also examine the closely related concept of almost regular Poisson manifolds, as studied in \cite{AZ17}, which reveals a natural Poisson groupoid associated with these structures. In this article, we investigate the intricate relationship between $E$-structures and almost regular Poisson structures. Our comparative analysis not only scrutinizes their Poisson properties but also offers explicit formulae for the Poisson structure on the Poisson groupoid associated to the $E$-structures as both Poisson manifolds and singular foliations. In doing so, we reveal an interesting link between the existence of commutative frames and Darboux-Carath\'eodory-type expressions for the relevant structures.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: