Papers
Topics
Authors
Recent
2000 character limit reached

Fast Local Neural Regression for Low-Cost, Path Traced Lambertian Global Illumination (2410.11625v1)

Published 15 Oct 2024 in cs.CV, cs.GR, and cs.LG

Abstract: Despite recent advances in hardware acceleration of ray tracing, real-time ray budgets remain stubbornly limited at a handful of samples per pixel (spp) on commodity hardware, placing the onus on denoising algorithms to achieve high visual quality for path traced global illumination. Neural network-based solutions give excellent result quality at the cost of increased execution time relative to hand-engineered methods, making them less suitable for deployment on resource-constrained systems. We therefore propose incorporating a neural network into a computationally-efficient local linear model-based denoiser, and demonstrate faithful single-frame reconstruction of global illumination for Lambertian scenes at very low sample counts (1spp) and for low computational cost. Other contributions include improving the quality and performance of local linear model-based denoising through a simplified mathematical treatment, and demonstration of the surprising usefulness of ambient occlusion as a guide channel. We also show how our technique is straightforwardly extensible to joint denoising and upsampling of path traced renders with reference to low-cost, rasterized guide channels.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.