Papers
Topics
Authors
Recent
2000 character limit reached

Statistical Properties of Deep Neural Networks with Dependent Data (2410.11113v3)

Published 14 Oct 2024 in stat.ML, cs.LG, and econ.EM

Abstract: This paper establishes statistical properties of deep neural network (DNN) estimators under dependent data. Two general results for nonparametric sieve estimators directly applicable to DNN estimators are given. The first establishes rates for convergence in probability under nonstationary data. The second provides non-asymptotic probability bounds on $\mathcal{L}{2}$-errors under stationary $\beta$-mixing data. I apply these results to DNN estimators in both regression and classification contexts imposing only a standard H\"older smoothness assumption. The DNN architectures considered are common in applications, featuring fully connected feedforward networks with any continuous piecewise linear activation function, unbounded weights, and a width and depth that grows with sample size. The framework provided also offers potential for research into other DNN architectures and time-series applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 6 likes about this paper.