Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic Power Control in a Hardware Neural Network with Error-Configurable MAC Units (2410.10545v1)

Published 14 Oct 2024 in cs.AR

Abstract: Multi-Layer Perceptrons (MLP) are powerful tools for representing complex, non-linear relationships, making them essential for diverse machine learning and AI applications. Efficient hardware implementation of MLPs can be achieved through many hardware and architectural design techniques. These networks excel at predictive modeling and classification tasks like image classification, making them a popular choice. Approximate computing techniques are increasingly used to optimize critical path delay, area, power, and overall hardware efficiency in high-performance computing systems through controlled error and related trade-offs. This study proposes a hardware MLP neural network implemented in 45nm CMOS technology, in which MAC units of the neurons incorporate error and power controllable approximate multipliers for classification of the MNIST dataset. The optimized network consists of 10 neurons within the hidden layers, occupying 0.026mm2 of area, with 5.55mW at 100MHz frequency in accurate mode and 4.81mW in lowest accuracy mode. The experiments indicate that the proposed design achieves a maximum rate of 13.33% decrease overall and 24.78% in each neuron's power consumption with only a 0.92% decrease in accuracy in comparison with accurate circuit.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.