Papers
Topics
Authors
Recent
2000 character limit reached

QIANets: Quantum-Integrated Adaptive Networks for Reduced Latency and Improved Inference Times in CNN Models (2410.10318v2)

Published 14 Oct 2024 in cs.CV and cs.LG

Abstract: Convolutional neural networks (CNNs) have made significant advances in computer vision tasks, yet their high inference times and latency often limit real-world applicability. While model compression techniques have gained popularity as solutions, they often overlook the critical balance between low latency and uncompromised accuracy. By harnessing quantum-inspired pruning, tensor decomposition, and annealing-based matrix factorization - three quantum-inspired concepts - we introduce QIANets: a novel approach of redesigning the traditional GoogLeNet, DenseNet, and ResNet-18 model architectures to process more parameters and computations whilst maintaining low inference times. Despite experimental limitations, the method was tested and evaluated, demonstrating reductions in inference times, along with effective accuracy preservations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: