Inverse initial problem under Nash strategy for stochastic reaction-diffusion equations with dynamic boundary conditions (2410.10007v1)
Abstract: In this paper, we study a multi-objective inverse initial problem with a Nash strategy constraint for forward stochastic reaction-diffusion equations with dynamic boundary conditions, where both the volume and surface equations are influenced by randomness. The objective is twofold: first, we maintain the state close to prescribed targets in fixed regions using two controls; second, we determine the history of the solution from observations at the final time. To achieve this, we establish new Carleman estimates for forward and backward equations, which are used to prove an interpolation inequality for a coupled forward-backward stochastic system. Consequently, we obtain two results: backward uniqueness and a conditional stability estimate for the initial conditions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.