Point Cloud Mixture-of-Domain-Experts Model for 3D Self-supervised Learning (2410.09886v3)
Abstract: Point clouds, as a primary representation of 3D data, can be categorized into scene domain point clouds and object domain point clouds. Point cloud self-supervised learning (SSL) has become a mainstream paradigm for learning 3D representations. However, existing point cloud SSL primarily focuses on learning domain-specific 3D representations within a single domain, neglecting the complementary nature of cross-domain knowledge, which limits the learning of 3D representations. In this paper, we propose to learn a comprehensive Point cloud Mixture-of-Domain-Experts model (Point-MoDE) via a block-to-scene pre-training strategy. Specifically, we first propose a mixture-of-domain-expert model consisting of scene domain experts and multiple shared object domain experts. Furthermore, we propose a block-to-scene pretraining strategy, which leverages the features of point blocks in the object domain to regress their initial positions in the scene domain through object-level block mask reconstruction and scene-level block position regression. By integrating the complementary knowledge between object and scene, this strategy simultaneously facilitates the learning of both object-domain and scene-domain representations, leading to a more comprehensive 3D representation. Extensive experiments in downstream tasks demonstrate the superiority of our model.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.