Duality-based Dynamical Optimal Transport of Discrete Time Systems (2410.09801v1)
Abstract: We study dynamical optimal transport of discrete time systems (dDOT) with Lagrangian cost. The problem is approached by combining optimal control and Kantorovich duality theory. Based on the derived solution, a first order splitting algorithm is proposed for numerical implementation. While solving partial differential equations is often required in the continuous time case, a salient feature of our algorithm is that it avoids equation solving entirely. Furthermore, it is typical to solve a convex optimization problem at each grid point in continuous time settings, the discrete case reduces this to a straightforward maximization. Additionally, the proposed algorithm is highly amenable to parallelization. For linear systems with Gaussian marginals, we provide a semi-definite programming formulation based on our theory. Finally, we validate the approach with a simulation example.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.