Papers
Topics
Authors
Recent
2000 character limit reached

VERITAS-NLI : Validation and Extraction of Reliable Information Through Automated Scraping and Natural Language Inference (2410.09455v1)

Published 12 Oct 2024 in cs.CL, cs.AI, and cs.LG

Abstract: In today's day and age where information is rapidly spread through online platforms, the rise of fake news poses an alarming threat to the integrity of public discourse, societal trust, and reputed news sources. Classical machine learning and Transformer-based models have been extensively studied for the task of fake news detection, however they are hampered by their reliance on training data and are unable to generalize on unseen headlines. To address these challenges, we propose our novel solution, leveraging web-scraping techniques and Natural Language Inference (NLI) models to retrieve external knowledge necessary for verifying the accuracy of a headline. Our system is evaluated on a diverse self-curated evaluation dataset spanning over multiple news channels and broad domains. Our best performing pipeline achieves an accuracy of 84.3% surpassing the best classical Machine Learning model by 33.3% and Bidirectional Encoder Representations from Transformers (BERT) by 31.0% . This highlights the efficacy of combining dynamic web-scraping with Natural Language Inference to find support for a claimed headline in the corresponding externally retrieved knowledge for the task of fake news detection.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.