Papers
Topics
Authors
Recent
2000 character limit reached

Anderson Acceleration in Nonsmooth Problems: Local Convergence via Active Manifold Identification (2410.09420v2)

Published 12 Oct 2024 in math.OC, cs.LG, cs.NA, and math.NA

Abstract: Anderson acceleration is an effective technique for enhancing the efficiency of fixed-point iterations; however, analyzing its convergence in nonsmooth settings presents significant challenges. In this paper, we investigate a class of nonsmooth optimization algorithms characterized by the active manifold identification property. This class includes a diverse array of methods such as the proximal point method, proximal gradient method, proximal linear method, proximal coordinate descent method, Douglas-Rachford splitting (or the alternating direction method of multipliers), and the iteratively reweighted $\ell_1$ method, among others. Under the assumption that the optimization problem possesses an active manifold at a stationary point, we establish a local R-linear convergence rate for the Anderson-accelerated algorithm. Our extensive numerical experiments further highlight the robust performance of the proposed Anderson-accelerated methods.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.